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Abstract

We introduce memory-dependent discrete-time quantum random walk models
by adding uncorrelated memory terms and also by modifying the Hamiltonian
of the walker to include couplings with memory-keeping agents. We next
study numerically the correlation effects in these models. We also propose
a correlation exponent as a relevant and promising tool for investigation of
correlation or memory (hence non-Markovian) effects. Our analysis can easily
be applied to more realistic models in which different regimes may emerge
because of competition between different underlying physical mechanisms.

PACS numbers: 03.67.−a, 05.40.Fb, 03.65.Yz

(Some figures in this article are in colour only in the electronic version)

Introduction

‘Random walks’ (RWs) is an important and prevalent concept in various branches of science
[1], in that numerous phenomena can be modeled by using the associated concepts. A classical
random walk (CRW) is the dynamics of a classical (i.e., non-quantum) object—called ‘particle’
or ‘walker’ hereafter—within a stochastic environment or under some stochastic forces. The
state of the walker in a CRW can be described by a local quantity, such as its ‘position’ (not
necessarily real-space position) at each step (or ‘time’), x(t). A characteristic of a RW is
its variance or dispersion, σ 2(t) = 〈x(t)2〉 − 〈x(t)〉2, where 〈·〉 denotes averaging over the
related probability distribution. For a simple CRW in a homogenous medium, this quantity
exhibits a linear behavior with the total walk time: σ 2(T ) ∼ T , for sufficiently large T, which
is a characteristic of a diffusive motion. Various generalizations of CRW can be found in the
literature—for example, see [2–7] and the references therein.

Recently, there has been a great interest in the dynamics of a quantum random walk
(QRW), a quantum object hopping (discretely or continuously) on a graph—e.g., a line—
based on an intrinsically quantum-mechanical decision making in each step, e.g., by an
auxiliary quantum ‘coin’ in a discrete QRW or by the very nature of a Hamiltonian dynamics
in a continuous QRW [8–18]. Moreover, it has been shown that the language of a (continuous)
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QRW, assisted with suitable Hamiltonian maps, can provide a universal framework for the
studies on general qubit systems [19]. One should note that in this type of RWs an external
object like a quantum coin is not necessary. In a QRW, the combined dynamics of the coin and
the walker is governed by a unitary operation UCW (acting on HC ⊗ HW), which introduces
quantum effects such as coherence and entanglement and results in interference between
classical paths. This quantum nature is responsible for the features radically different than
those of a CRW, such as: a different, spread non-Gaussian probability distribution P(x, t)

[12, 16], a quadratically faster spreading σ 2 ∼ T 2 [12, 16, 20, 21] (the ballistic motion), the
exponentially faster propagation between particular nodes of a specific graph [11, 13].

Our chief interest is to numerically investigate how ‘memory-effects’ or ‘correlations’
show up and play a role in the general behavior of a (discrete, coined) QRW. In a RW, the
dynamics in every time is generally dictated by the history of the previous step(s) and the
coin-flip(s). When the dynamics is Markovian, in principle there is no memory in the system,
and the walker’s immediate future is decided only based on its present and an immediate
coin-flip [1]. In other words, in a Markovian CRW, by definition, the walker does not keep
any memory of its state in previous times. From a physical point of view, it seems that
when the walker is interacting with a slowly responding environment—slow relative to the
characteristic time of the walk—it is unlikely that the environment can feed some of the
acquired (or leaked) information back to the walker, and therefore, affect its future moves.
In this case, the leading effect would be a loss of memory, and accordingly, emergence
of a regime in which the Markovian assumption is a valid approximation. As a result, it is
expected that in this regime, there would be a negligible correlation between the configurations
in distant times. In open quantum systems the analysis of non-Markovian effects is more
involved than in the classical case and adding a memory kernel to the dynamical equations has
various complex aspects [22–24]. Besides, unlike the classical case, in open quantum systems
one cannot use the standard approaches like the Chapman–Kolmogorov equation to test the
Markovian property [25], because the related joint probabilities might be not well defined
from quantum-mechanical perspective. Thus, more intricate techniques are needed in order
for deciding Markovianness of a quantum operation. Recently, some progress in this line has
been reported in [26], where a necessary and sufficient measure for Markovianness has been
suggested.

In a discrete QRW, the stepwise coin-walker dynamics, i.e., |�(t +1)〉CW = UCW|�(t)〉CW

for t � T , may imply a Markovian characteristic for the walker’s dynamics as well. Although
for the coin-walker system the dynamics is indeed Markovian (or memoryless), this is not
generally the case for the walker’s state alone [27]. It has been shown that due to the quantum
entanglement between the coin’s and the walker’s states, there can exist a ‘pseudo’ memory
(hence non-Markovian effect) in the RW after tracing over the coin at the last step (or after a few
steps). Precisely speaking, in the case of a standard discrete-time QRW with a localized initial
state, the quantum probability distribution Pquant(x, t) is related to all classical probabilities
{Pclass(x, t ′) : t ′ � t} (with the same initial conditions). Tracing over the coin immediately
after each step, and averaging over all possible measurement results, generates a CRW [28].
This is typical of systems under decoherence or interaction with an external environment.
When the environment observes or measures the system, some coherence, hence dynamical
information, would become inaccessible and the system tends to lose its quantum correlations.
This has been anticipated as a usual route to manifest classical-like behavior in quantum
systems.

In the case of a QRW, there are numerous studies specializing on how different sources
of decoherence can affect a QRW and induce a transition to a CRW. For example, tracing
over the coin after each step or replacing the used coin with a new one at each step (multiple

2



J. Phys. A: Math. Theor. 42 (2009) 175304 J B Stang et al

coins) and tracing over all of them after a while [28–30], random phase noise on the coin state
[15, 31], unitary stochastic noise [32], periodic measurements on the coin and/or walker, or
randomly broken links on the graph [33]—for a general review see [34]. In these studies,
the long-time behavior of the variance σ 2, has been adopted as an indicator to distinguish
‘classical’ and ‘quantum’ regimes of a RW [28]. This approach, although very fruitful in
simple cases, is not necessarily conclusive in general cases in the sense that there are quantum
diffusion models featuring sub-ballistic, the so-called ‘anomalous’ diffusion, or other types
of behaviors [35–38]. This implies that, in general, a deeper characterization of different
regimes in quantum systems by possibly stronger tools is needed. Moreover, there is still no
clear understanding about possible roles memory, correlations or related environmental effects
might play in appearance of different regimes in a general open system QRW or transitions
between such regimes. A study in this line, therefore, might shed some light and bridge
between seemingly different underlying notions and physical behaviors. Here we report a
numerical preliminary step that may fill some blanks.

In the following, we introduce a few simple QRW models in which a memory-keeping
feature is included. First we add a non-Markovian property to a QRW as an uncorrelated
mixing of the states at different instants. We show how variance for these models behave
versus time, signaling the inadequacy of this quantity for distinguishing different regimes.
Next, we consider a more physically motivated model in which, in addition to the coin and
the walker, a simple harmonic oscillator has been coupled to play as a memory-keeping
agent. We define the concepts of correlation and correlation exponent as possibly useful tools
for evaluating the effect of memory. The correlation exponent for our model is calculated
numerically and contrasted with the exponents of a memory-dependent CRW model [6]. This
analysis implies that adding memory may induce anti-correlation similar to what is seen in a
self-avoiding CRW.

Uncorrelated memory dependence

We start by a brief review of the standard (memoryless, discrete) QRW [16]. This
model consists of a finite one-dimensional integer lattice forming the walker’s space,
HW = span{|x〉}Lx=−L, and a chirality (or spin) degree of freedom, HC = span{|±〉},
constituting the coin space. The dynamics of |�(t)〉CW is induced by the unitary operator

UCW(p) = (P+ ⊗ S + P− ⊗ S†)(uC(p) ⊗ 11W), (1)

where P± are the projection operators onto HC, S = ∑L−1
x=−L |x+1〉W〈x| is the shift operator on

the graph and uC(p) = ( √
p

√
1−p√

1−p −√
p

)
, 0 � p � 1, is a unitary quantum coin tossing operator.

Intuitively, one might imagine that a memory-dependent model of a QRW can be built
readily by considering that the state |�(t + M)〉CW is obtained from some operation on a
linear combination of the states in the M previous instants: {|�(t + m)〉CW}M−1

m=0 . This simple
approach (without further sophisticated techniques) usually leads to a non-linear model in the
following sense. Consider, for example, the following evolution:

|�(t + 2)〉CW = V(1)
CW(t)|�(t + 1)〉CW + V(2)

CW(t)|�(t)〉CW, (2)

V(1) and V(2) are model-dependent dynamical operators. Normalization of |�(t +2)〉CW yields

|〈�(t + 1)|V(1)V(1)†|�(t + 1)〉 + 〈�(t)|V(2)V(2)†|�(t)〉
+ 2 Re(〈�(t + 1)|V(1)V(2)†|�(t)〉)|2 = 1, (3)

which in general implies that the dynamical operators V(1) and V(2) would depend on the
states �(t) and �(t + 1). This is an unpleasant feature of this naive memory adding approach.
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Figure 1. Variance versus time for the model in equation (4), with M = 2, �1 = �, and
�2 = 1 − �, T = 100 and p = 1/2. The inset shows the values of � and the parameters in the
fitting σ 2 ∼ at2 + bt + c. A quadratic (linear) behavior is associated with quantum (classical)
effects.

A similar issue inflicts the model |�(t + M)〉CW = UCW
∑M−1

m=0 am|�(t + m)〉CW, where the
coefficients am would depend on �s. There are various ways to avoid such issues (i.e.,
nonlinearities). Here we consider two simple (though not necessarily physically motivated)
models in which the states at different instants are mixed in an uncorrelated and random manner.
A rather similar approach has already been used to investigate numerically decoherence effects
on a QRW [39].

The first model is based on the density matrices in the M previous steps

ρW(t + M) =
M∑

σ=±,k=1

�kA
(k)
σ ρW(t + M − k)A(k)†

σ . (4)

Here, 0 � �k � 1, where k ∈ {1, . . . ,M} and
∑M

k=1 �k = 1, is the factor determining the
contribution of ρW(t + M − k) in the dynamics of ρW(t + M), and A(k)

σ is the Kraus operator
given by A(k)

σ = 〈σ |Uk
CW|C〉, where |C〉 = C+|+〉 + C−|−〉 is the initial state of the coin. The

non-Markovian characteristic of this model is apparent for the memory dependence of the
walker’s state on its M previous instances. Another feature inferred from equation (4) is that
in every step we discard the coin, tracing over it to obtain ρW, and use a fresh coin prepared
as |C〉 for the next step (multiple coins). Indeed, including multiple coins has already been
identified as a way to include previous history in a QRW [30]. For a balanced initial coin
(C+ = −iC− = 1/

√
2) and a balanced coin-flip (p = 1/2), if �1 = 1 we obtain a behavior

similar to an unbiased memoryless CRW in the sense of variance (see figure 1). Degree of
memory dependence of the model is adjusted by �k s. For numerical simulations, in addition
to the aforementioned conditions, we have taken M = 2 and T = 100, with the walker initially
localized at the origin. Figure 2 depicts the peaks of the probability distribution P(x, 100) for
varying �. Note that for a range of values of �, the probability distribution exhibits a bimodal
behavior, similar to a memoryless QRW. As � increases, the peaks approach each other and
eventually merge into one for � ≈ 0.8. As indicated in the inset of figure 1, for this walk a
σ 2 ∼ a(�)t2 + b(�)t + c(�) fitting can be found for different values of �—with σ 2 ∼ t for
� = 1. In this respect this model shows characteristics of both QRW and CRW for different
ranges of �.
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Figure 2. Positions of the peaks of the probability distribution at t = 100 for the evolution
described in equation 4. This model exhibits bimodal (unimodal) behavior for 0 � � < 0.8
(� > 0.8).
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Figure 3. Left: probability distribution P(x, 100) versus � for equation (5) and right: P(x, t) for
� = 2/3. In both of the plots we have taken p = 1/2.

The second model is an uncorrelated mixing of some unitary dynamics which overall
constitutes a dependence on information from the M previous steps. Using M different
quantum coin-walk operators, UCW(pk) ≡ U

(k)
CW (for notational convenience), generated by

{pk}Mk=1, the evolution is described as the following:

ρCW(t + M) =
M∑

k=1

�kU
(k)
CWρCW(t + M − k)U

(k)†
CW . (5)

Again, 0 � �k � 1 and
∑

k �k = 1. The density matrix at each time t > 1 will involve some
mixing of the different coin walks, introducing correlations. If M = 1 or �1 = 1, this reduces
to the memoryless QRW. Like equation (4), the degree of correlations can be adjusted by �k .
However, unlike the previous model, there is no bifurcation or transition from bimodality to
unimodality in the behavior of the probability distribution versus �—see figure 3.

A simple harmonic oscillator model

A more physically relevant picture in which the role of correlations and memory dependence
may be understood would naturally need a Hamiltonian formalism. To this end, keeping the
discussion simple (for numerics), we modify the ‘Hamiltonian’ of the memoryless coined
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QRW model so that a memory-keeping agent can be added. This picture can easily be
generalized to more realistic cases in which the dynamics is continuous in time, and also, in
principle, there is no need for an auxiliary quantum coin degree of freedom. The Hamiltonian
of the memoryless QRW can be found from

UCW(p) = ei π
2 eiZ⊗P e−i π

2 (
√

1−pX+
√

pZ) (6)

by using the Baker–Campbell–Hausdorff formula. Now consider that the walker is coupled
to a simple harmonic oscillator and a reservoir consisting of a sufficiently large number of
excitation modes in the following manner:

HCWOR = HCW + HO + HR + HOR + λP (a + a†). (7)

Although this ‘Hamiltonian’ models a crude simplification, clearly lacking various realistic
characteristics, to some extent it has been inspired by a cavity QED-based proposal for a
QRW [40], and serves sufficiently well for basic demonstration of our ideas. In equation (7),
HO = 1

2ωa†a,HR = 1
2

∑∞
k=1 	kc

†
kck , and for the coupling of the oscillator and reservoir

degrees of freedom we can take, for example, HOR = g
(
a

∑∞
k=1 c

†
k + a† ∑∞

k=1 ck

)
, where a

is the lowering operator of the oscillator (a†a|n〉O = n|n〉O, for 0 � n � nmax < ∞) and
ck is the annihilation operator of the kth excitation mode. The walker–oscillator coupling
term, HWO = λP (a + a†), implies that as the walker moves over the lattice, energy is being
exchanged with the oscillator, and the oscillator gets partial information about the walker.
This interaction is effectively a momentum–position coupling, which preserves the walker’s
momentum. The memory dependence in this model is modulated by the coupling constant λ

(λ = 0 corresponds to the memoryless QRW). The coefficient g, instead, controls the effect
of the reservoir. The mediated coupling of the oscillator to the reservoir may also result in
long-term correlations—this, however, needs a closer analysis which is beyond the scope of
this paper. Considering that [HCW,HWO + HO] = 0, we have

UCWO = UCW e−i(HWO+HO). (8)

To maintain tractability of the numerical simulations, here we make the following assumptions:
(i) ignoring the reservoir effect, i.e., g = 0, (ii) taking a balanced coin-flip (p = 1/2) and
an initially balanced coin, (iii) the walker is initially localized at the center, (iv) ω = 5,
(v) T = 60, (vi) periodic boundary condition, S|L〉W = | − L〉W, with L = 75, (vii) the
oscillator is initially prepared at the ground state |0〉O, (viii) the oscillator energy levels (or
Hilbert space) are truncated at nmax = 10, and (ix) working in 0 � λ � 1 interval for the
coupling constant. Validity of assumption (viii) is confirmed through the simulations noting
that after T = 60 the maximum probability for |10〉O being populated is of the order of 10−24

(for λ = 0.1). Moreover, we have seen that taking L = 75 and T = 60 makes the boundary
effects insignificant.

Figure 4 depicts the probability distribution for the modified QRW model at T = 60, in
which symmetry is accounted for by the symmetry of the initial conditions. The distribution
with λ = 0.1 maintains a relatively similar behavior as the memoryless QRW—indicating a
weak coupling regime—whilst there are non-zero probabilities everywhere on the lattice due
to the λ-coupling, indicating spreading of the distribution as compared to the memoryless
QRW. This can be seen in figure 5, variance σ 2

λ (t) versus time t for three different values of
λ, in which a fitting of the form a(λ)t2 + b(λ)t + c(λ) yields a(1) ≈ 2.519, a(0.1) ≈ 0.295
and a(0) ≈ 0.292—a faster spreading for the modified model, which may be understood by
noting that the λ-coupling favors hopping of the walker.
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Figure 4. Probability distribution for the memory-dependent QRW described by equation (7).
λ = 0 walk is only plotted at even points and for |x| � 60, as it has zero probability at odd points
and for |x| > 60. The λ = 0.1 walk has non-zero probabilities everywhere on the lattice.
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Figure 5. Variance versus time for the modified QRW for different values of λ. The inset highlights
that σ 2

0.1 > σ 2
0.01.

Comparison of the walks

To make a meaningful comparative analysis of how memory and correlations behave in
different RWs, we choose a memory-dependent CRW model proposed in [6] (for other
memory-dependent CRW models see, for example, [2–4, 7]). This model is interesting in that
it features various aspects of a real-world memory-keeping systems, such as ‘saturation’ of
memory (i.e., finite memory capacity). Unfortunately a direct quantum-mechanical extension
of the model entails nonlinearity and necessity of feedback. In this model, memory is based
on the ‘information’ of the sites, which is determined by number of the times the walker visits
each site as well as the times in which these visits occur. The walker hops from site i to a
neighboring site j with the probability

pij ∼ eu(sj −si ), (9)
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where

si(t) =
∑

m

ni(m) e−κ(t−m) (10)

is the remaining information at site i at time t. Here u is the density of information energy;
u > 0 (u < 0) corresponds to a walker attracted to (repelled by) sites with high information
content and u = 0 gives the memoryless CRW. The coefficient κ � 0 is the memory decay
exponent, for our simulations fixed at κ = 10−4, and ni(m) is 1 if site i was visited at time
m and 0 otherwise. A saturated information amount, smax, is assumed above which the effect
of information ceases to increase (s(t) � smax), which for our simulations is taken to be
13. The effect of memory on the scaling exponents of the RW, in terms of the number of
sites visited and the distance the walker travels from its initial position, has been examined
[6], demonstrating that for any κ > 0 and finite u this RW exhibits a scaling behavior for
the variance similar to that of a memoryless CRW. As u → ∞, the scaling behavior of the
variance of this model changes from σ 2 ∼ T to σ 2 ∼ c, where c is a constant; whereas
for u → −∞, the scaling changes from σ 2 ∼ T to σ 2 ∼ T 2. For our numerical analysis
u remains restricted such that the variance behaves as expected for CRW. The probability
distribution for this memory-dependent CRW is calculated using 104 independent repetitions
and an averaging over the results.

A standard method to characterize short- and/or long-term memory-dependent behaviors
in data analysis is through calculation of (auto-) correlation functions [41]. In the case of
quantum diffusion systems, it has also been argued that the temporal scaling behavior of the
correlation function can show some universal characteristic relation with the spreading and
the spectrum [36–38, 42–44]. We adopt a modified definition for the correlation function as
follows. From the probabilities at a fixed x∗ for varying time t (up to T � ∞), the time-series
{Px∗(t)}Tt=0 is generated. Next, we define

Cx∗(τ ) ≡
T −τ∑

t=0

Px∗(t)Px∗(t + τ). (11)

An advantage of this definition, over the one used in [36, 37, 42, 43], is that ours allows for
building time-series data for a QRW in the same footing as CRW. Besides, it enables application
of (classical) data analysis tools, e.g., detrended fluctuation analysis [45], for finding possible
trends and fractal behaviors in a dataset. It has been shown that the correlation function exhibits
a power-law (i.e., algebraic) decay as C(τ) ∼ τ−γ , where γ —the correlation exponent—is
related to spectral properties of the system [36]. A small value of γ is an attribute of a
walk that stays relatively localized, whereas a large γ indicates a tendency for the walker’s
distribution to spread with time. The correlation function has been calculated for the memory-
dependent CRW (for u = {0,±0.1}) and the modified QRW (for λ = {0, 0.01, 0.1}) at
x∗ = 0. The value of C(τ) is very small for odd values of τ . This is because the probability
of the walker occupying the origin in odd ts is small. These probabilities are non-zero in the
case of λ > 0 as seen earlier. In CRW and for λ = 0, this probability is zero. The even
(time) points of the correlation function have been fitted to C(τ) ∼ a +bτ−γ —figure 6—with
γQRW ≈ 1.153, γSAv−CRW ≈ 0.01, γCRW ≈ 0.005 and γSAt−CRW ≈ 0.003. The behavior
of γ versus λ has been plotted in figure 7. A preliminary analysis suggests that the peak
in this plot may be a byproduct of the finite size of the system. A closer investigation,
however, may suggest a better explanation for possible underlying reason(s). The property
γu=0.1 < γu=0 < γu=−0.1 is in accordance with our understanding about the physical meanings
of positive and negative us, i.e., self-attracting and self-avoiding, respectively. An interesting
observation is that in the limit of u → −∞, SAv-CRW and QRW show similar general
behaviors.
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memory-dependent CRW (SAv-CRW), memoryless CRW and self-attracting memory-dependent
CRW (SAt-CRW). Closer examination reveals that, from top to bottom, the QRW plots are ordered
λ = 0, λ = 0.01 and λ = 0.1.
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Figure 7. Plot of γ versus λ for the memory-dependent QRW. γ increases with λ, as the peak and
subsequent decrease is a consequence of the finite size of our walker’s space.

Summary

We have introduced simple quantum random walk models with memory-dependent features
by adding a non-Markovian property to the walk as an uncorrelated mixing of the states at
different instants and also by introducing a Hamiltonian picture with a memory modulating
coupling. Variance versus time for the uncorrelated models has been calculated. In the
Hamiltonian model, we have defined and calculated the concepts of correlation and correlation
exponent as useful tools for assessing the effect of memory or correlation. Comparison with
classical memoryless and memory-dependent models has indicated an anti-correlation in the
quantum random walk. Variance as an indicator to distinguish between classical and quantum
regimes has appeared to be a not so useful tool. We, instead, have suggested that tools
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such as correlation exponents and detrended fluctuation analysis are probably more useful in
characterizing different regimes of a quantum system. These studies may shed some light
on how different regimes of behaviors in quantum diffusion systems emerge and how they
are related to other physical characteristics of those systems. Also, these might have some
implications on when a quantum random walk-based algorithm for a problem may result in a
speedup in comparison to classical algorithms. A new area of application of quantum random
walk ideas in which energy transfer in photosynthetic systems is considered [46] may also
benefit from our study or investigations likewise.
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